Repression by Notch is required before Wingless signalling during muscle progenitor cell development in Drosophila
نویسندگان
چکیده
The larval muscles of Drosophila arise from the fusion of muscle founder cells, which give each individual muscle its identity, with myoblasts (reviewed in [1]). Muscle founder cells arise from the asymmetric division of muscle progenitor cells, each of which develops from a group of cells in the somatic mesoderm that express lethal of scute [2]. All the cells in a cluster can potentially form muscle progenitors, but owing to lateral inhibition, only one or two develop as such [2] [3] [4] [5]. Muscle progenitors, and the subsequent founder cells, then express transcription factors such as Krüppel, S59 and Even-skipped, which confer identity on the muscle [6] [7] [8]. Definition of some muscle progenitors, including three groups that express S59, depends on Wingless signalling [9]. Lateral inhibition requires Delta signalling through Notch and the transcription factor Suppressor of Hairless [3] [4] [5]. As the Wingless and lateral-inhibition signals are sequential [8], one might expect that muscle progenitors would fail to develop in the absence of Wingless signalling, regardless of the presence or absence of lateral-inhibition signalling. Here, we examine the development of the S59-expressing muscle progenitor cells in mutant backgrounds in which both Wingless signalling and lateral inhibition are disrupted. We show that progenitor cells failed to develop when both these processes were disrupted. Our analysis also reveals a repressive function of Notch, required before or concurrently with Wingless signalling, which is unrelated to its role in lateral inhibition.
منابع مشابه
decapentaplegic is a direct target of dTcf repression in the Drosophila visceral mesoderm.
Drosophila T cell factor (dTcf) mediates transcriptional activation in the presence of Wingless signalling and repression in its absence. Wingless signalling is required for the correct expression of decapentaplegic (dpp), a Transforming Growth Factor (beta) family member, in parasegments 3 and 7 of the Drosophila visceral mesoderm. Here we demonstrate that a dpp enhancer element, which directs...
متن کاملTranscriptional repression due to high levels of Wingless signalling.
Extracellular signals can act at different threshold levels to elicit distinct transcriptional and cellular responses. Here, we examine the transcriptional regulation of the Wingless target gene Ultrabithorax (Ubx) in the embryonic midgut of Drosophila. Our previous work showed that Ubx transcription is stimulated in this tissue by Dpp and by low levels of Wingless signalling. We now find that ...
متن کاملSegregation of myogenic lineages in Drosophila requires numb.
Terminal divisions of myogenic lineages in the Drosophila embryo generate sibling myoblasts that found larval muscles or form precursors of adult muscles. Alternative fates adopted by sibling myoblasts are associated with distinct patterns of gene expression. Genes expressed in the progenitor cell are maintained in one sibling and repressed in the other. These differences depend on an asymmetri...
متن کاملdecapentaplegic, a target gene of the wingless signalling pathway in the Drosophila midgut.
dishevelled, shaggy/zeste-white 3 and armadillo are required for transmission of the wingless signal in the Drosophila epidermis. We show that these genes act in the same epistatic order in the embryonic midgut to transmit the wingless signal. In addition to mediating transcriptional stimulation of the homeotic genes Ultrabithorax and labial, they are also required for transcriptional repressio...
متن کاملA Wingless and Notch double-repression mechanism regulates G1-S transition in the Drosophila wing.
The control of tissue growth and patterning is orchestrated in various multicellular tissues by the coordinated activity of the signalling molecules Wnt/Wingless (Wg) and Notch, and mutations in these pathways can cause cancer. The role of these molecules in the control of cell proliferation and the crosstalk between their corresponding pathways remain poorly understood. Crosstalk between Notch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 9 شماره
صفحات -
تاریخ انتشار 1999